Name: \qquad

AP CALCULUS AB SUMMER ASSIGNMENT

Solve each of the following problems, showing all work. Do NOT just write the answer. Be sure all answers are in simplified form. Box in and/or highlight your answers. The assignment is due on the first day of class. The first unit test of the semester will include topics from this assignment following a brief review of these topics.

Write each of the following absolute value equations in piecewise form. Show work leading to your answers. Ex: $f(x)=|3 x+2|$. Determine where the absolute value expression is positive and where it is negative by setting $3 x+2=0$ and solving to get $x=\frac{-2}{3}$. Since $3 x+2 \geq 0$ for any $x \geq \frac{-2}{3}$, the expression remains positive when the absolute value is dropped. Since $3 x+2<0$ for any $x<\frac{-2}{3}$, the expression becomes negative when the absolute value is dropped. $f(x)=|3 x+2|=\left\{\begin{array}{l}3 x+2, x \geq \frac{-2}{3} \\ -3 x-2, x<\frac{-2}{3}\end{array}\right\}$

1. $f(x)=|2 x-5|$
2. $f(x)=\left|4 x^{2}-1\right|$
3. $f(x)=\left|1-x^{2}\right|$

Find each of the following for $f(x)=x^{2}+3 x+1$ and $g(x)=\frac{1}{x+4}$. Simplify your answers.
4. $f(g(x))$
5. $f(x+h)$
6. $g^{-1}(x)$

Find each of the following values in exact form

7. $\sin \left(\frac{4 \pi}{3}\right)$
8. $\cos \left(\frac{7 \pi}{4}\right)$
9. $\tan \left(\frac{7 \pi}{6}\right)$
10. $\sin (5 \pi)$
11. $\cos \left(\frac{-2 \pi}{3}\right)$
12. $\csc \left(\frac{3 \pi}{2}\right)$
13. $\sec \left(\frac{2 \pi}{3}\right)$
14. $\cot \left(\frac{11 \pi}{6}\right)$
15. $\csc (\pi)$

Find each of the following for the piecewise function $f(x)=\left\{\begin{array}{c}\sqrt{x}, x \geq 0 \\ 2 x+1, x<0\end{array}\right\}$. Be sure answers are in exact
form. Show your work!!
16. $f(-2)$
17. $f(25)$
18. $f(-9)$

Solve each of the following for y in terms of x. Show all work.
19. $3 x y+2 y=-6 x+1$
20. $3 y^{2}+14 x=2 x^{2}$
21. $9 x-3 y+2 x y=7 x^{2}+4 y$
22. $12 x^{2} y+70 x y-3 x^{3}+12 x=9 y+13 x^{2}$

Sketch the graph of each function.

23. $f(x)=(x+2)^{2}-3$
24. $f(x)=|x+1|+4$
25. $f(x)=(x-1)^{3}$
26. $f(x)=-\sqrt{x-5}+2$
27. $f(x)=2^{x}+3$
28. $f(x)=\frac{1}{2}^{(x-2)}$
29. $f(x)=-2(x-1)^{2}+4$
30. $f(x)=2 \sin (\pi x)-3$
31. $f(x)=-\cos (2 x-\pi)$
32. $f(x)=e^{x}-2$
33. $f(x)=\ln (x+3)$
34. $f(x)=\tan \left(\frac{x}{2}\right)+1$

Find any asymptotes (vertical, horizontal, or slant) for the following functions and any x-intercepts. Do Not Graph.
35. $f(x)=\frac{x}{x^{3}-3}$
36. $f(x)=\frac{x^{3}+2 x^{2}-x-2}{x^{2}+x-6}$

Solve each of the following equations for x. Use algebra and show your work.
For trigonometric equations, give all exact solutions on the interval $[0,2 \pi)$.
37. $x^{4}+x^{2}-2=0$
38. $x^{1 / 2}+\frac{1}{x^{1 / 2}}-2=0$
39. $15 x-\frac{4}{x}=4$
40. $-x^{5}+29 x^{3}-100 x=0$
41. $x^{2 / 3}+2 x^{1 / 3}-15=0$
42. $4 x^{2}-x^{3}=0$
43. $-x^{3}-5 x^{2}+4 x+20=0$
44. $-x^{4}+x^{3}+20 x^{2}=0$
45. $\ln \left(x^{2}-3 x-5\right)=0$
46. $3-\frac{6}{x-2}=0$
47. $x^{\frac{5}{2}}-4 x^{\frac{3}{2}}-5 x^{\frac{1}{2}}=0$
48. $x^{\frac{7}{3}}+x^{\frac{4}{3}}-12 x^{\frac{1}{3}}=0$
49. $\ln \left(x^{2}+5 x+7\right)=0$
50. $x^{2} e^{x}-3 x e^{x}-10 e^{x}=0$
51. $\ln (5 x)-\ln (x+2)=0$

Solve each trigonometric equation for \boldsymbol{x}. Give all exact solutions on the interval $[0,2 \pi)$.
52. $2 \sin ^{2} x-\sin x=0$
53. $2 \cos ^{2} x+\cos x-1=0$
54. $\sin x+\cos x=0$
55. $6 \tan (2 x)=6$
56. $2 \sin x \cos x=\sqrt{3} \cos x$
57. $\sec ^{2} x-\sec x=2$
58. $2 \sin ^{2} x-3 \cos x=0$
59. $4 \cos ^{2} x=3$
60. $\tan ^{2}\left(\frac{x}{2}\right)-3=0$

Sketch a graph of each piecewise function

61. $f(x)= \begin{cases}3 & \mathrm{x}<-2 \\ 2 \mathrm{x}-1 & -2 \leq \mathrm{x} \leq 1 \\ \mathrm{x}^{2} & \mathrm{x}>1\end{cases}$
62. $f(x)= \begin{cases}e^{\frac{x}{\pi}} & x<\pi \\ \sin x & \pi \leq x \leq 2 \pi\end{cases}$
63. Given the graph of $f(x)$ below, identify the intervals where f is increasing and decreasing. Then identify where the values of f go from negative to positive and positive to negative.

64. Find the area of the region between the lines and the x-axis using formulas from Geometry. Show your work!!

